Reorganisation of cerebral circuits in human ischemic brain disease.

نویسندگان

  • Rüdiger J Seitz
  • Cathrin M Bütefisch
  • Raimund Kleiser
  • Volker Hömberg
چکیده

Animal experiments suggest that reorganisation of cerebral representations is the neurobiological basis of post-lesional recovery. In human ischemic brain disease recovery is a dynamic and sustained process beginning after stroke manifestation. The mechanisms underlying recovery can be investigated non-invasively in the human brain using functional neuroimaging and transcranial magnetic stimulation (TMS). In the acute stage, the mismatch area of the perfusion deficit and the impaired water diffusion as assessed by magnetic resonance imaging (MRI) shows the brain tissue that potentially can be rescued by thrombolysis or emergency carotid endarterectomy. Since spontaneous motor recovery is a function of the corticospinal tract integrity, early reperfusion of ischemic tissue is critical. In the subacute and chronic stage after stroke, recovery of motor function was shown to take place irrespective of a concomitant affection of the somatosensory system. Functional MRI with simultaneous recordings of the electromyogram provides evidence that the abnormal activation of motor and premotor cortical areas in both hemispheres related to finger movements has a large interindividual variability. As evident from TMS, recovery results from regression of perilesional inhibition and from remote intracortical disinhibition. Repetitive training, constraint induced training and motor imagery can augment recovery promoting a re-emerging activation in the affected hemisphere. Evolution of altered local perilesional and large-scale bihemispheric circuits appears to allow for post-lesional deficit compensation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative evaluation of Blood Brain Barrier permeability in transient focal cerebral ischemia in the rat

Introduction: Development of brain edema following focal cerebral ischemia exacerbates primary ischemic injury. Blood brain barrier (BBB) opening is an important part of edema named as vasogenic brain edema. In this study, quantitative alterations of BBB permeability is experimentally evaluated using transient focal cerebral ischemia in the rat. Methods: Two groups of male rats (ischemic and sh...

متن کامل

Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats

Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...

متن کامل

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

Attenuation of Focal Cerebral Ischemic Injury Following Post-Ischemic Inhibition of Angiotensin Converting Enzyme (ACE) Activity in Normotensive Rat

Background: Central renin angiotensin system has an important role on the cerebral microcirculation and metabolism. Our previous work showed that inhibition of angiotensin converting enzyme (ACE) activity prior to induction of ischemia protected the brain from severe ischemia/reperfusion (I/R) injuries. This study evaluated the impacts of post-ischemic inhibition of ACE, enalapril, on brain inf...

متن کامل

The Neuroprotective Effect of Rosemary (Rosmarinus Officinalis L.) Hydroalcoholic Extract on Cerebral Ischemic Tolerance in Experimental Stroke

The prevention of BBB breakdown and the subsequent vasogenic edema are important parts of the medical management of ischemic stroke. The purpose of this study was to investigate the ischemic tolerance effect of Rosmarinus officinalis leaf hydro-alcoholic extract (RHE).Five groups of animals were designed: sham (underwent surgery without MCAO) and MCAO groups, the MCAO groups were pretreated ora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Restorative neurology and neuroscience

دوره 22 3-5  شماره 

صفحات  -

تاریخ انتشار 2004